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INTRODUCTION

A major goal of the Office of Naval Research (ONR) is to extend the performance of
current Automatic Target Recognition (ATR) technology to enable the development of
systems that can be useful in real world battlefield conditions. To be of practical use in
battlefield conditions, an ATR system must be both reliable and accurate to achieve
lethality while reducing risk of collateral damage. In particular, there is a need for high
level discrimination so that similar targets can be distinguished to avoid fratricide. Further,
an effective ATR system must be operational over a wide range of engagement
approaches, weather, thermal, lighting, and terrain conditions and must be capable of
performing well even when target sensor data is significantly degraded due to poor
visibility, or occlusion, and should be resistant to highly cluttered environments. The
required ATR system performance must be achieved within the power, speed, size and
cost constraints dictated by real world battlefield conditions.

While battlefield conditions often conspire to reduce the fidelity of target signatures
(e.g. reduced contrast, occlusion, broken contours), high clutter environments can greatly
burden ATR processing, making it very difficult to extract degraded signatures without
becoming overwhelmed by data. Highly textured scenes and urban environments can
both induce high clutter conditions into an ATR scenario. Therefore, successful ATR
systems must be inherently efficient to operate effectively in all required environments.

We are sensitive to these practical ATR system requirements and the associated
technical issues and have been working with the Office of Naval Research (ONR) on
recent programs, #N00014-92-C-0087 and #N00014-95-1-0859, to develop ATR
technology appropriate for Visible and Infra-Red (IR) systems that effectively addresses
these issues [Whi95].

Our ATR approach achieves tolerance to degraded and/or incomplete target
signatures by using local features that are robustly extracted without need for finding
intermediate high quality continuous edges or regions. Instead, our approach uses low
level orientation processing combined with consistency reasoning to extract stable
features and properties, used as feature attributes. Low level processing alone, such as
high frequency filtering, tends to extract too many false features because of numerical
instability in the vicinity of high frequency image information, which is often where features
(e.g. corners) of interest occur.

Robust recognition is accomplished by matching sensor features with like model
features through the rich hypothesis prediction and verification paradigm of Model-Based
ATR (MBATR). We achieve tolerance to clutter by using an efficient search strategy that
is directed by feature attributes and performed in our unique invariant representation,
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Vertex Space, that reduces both the dimensionality and size of the required search space
[WhiB8]. Vertex features (curvature maxima) are extracted from images and mapped to
points in Vertex Space based:on their local, invariant properties. The Vertex Space
mapping results in a reduced representation that serves as a characteristic target
signature, which is invariant to four of the six degrees of freedom associated with three
dimensional (3D) viewing geometry. By conducting the model to image search, initially, in
Vertex Space, the search process is significantly simplified.

The extracted features and their attributes are used to index into a model database.
To generate the model database, 3D geometric and sensor properties of the model are
automatically and systematically encoded into a set of compact 2D representations,
where each representation is derived from a single synthetic view of the object by
mapping it to Vertex Space. Our model database efficiently captures essential, invariant
structural target information of complex target models, achieving a principal, and elusive
goal of Model-Based ATR.

Features from sensor data are analyzed in a similar way and their invariant properties,
as represented in Vertex Space, index into the model database and direct the search
process, yielding hypotheses consisting of candidate representations, their associated
two dimensional (2D) views and potential correspondences of model features with sensor
image features. The generated hypotheses are quickly verified or rejected by projecting
model features into the image using the candidate viewing geometry, and determining the
level of correspondence.

In our previous ONR programs, a high level search strategy exploiting Vertex Space
was developed and its computational complexity was analyzed theoretically and with
automated clutter experiments. Indexing (rapid preliminary recognition) results were
demonstrated for simple and complex real targets using target models, synthetic imagery
and randomly generated image clutter. In addition, techniques were developed, based on
implicit contours derived from orientation consistency, to extract stable features from real
FLIR imagery for Vertex Space analysis, (see "Automated Missile Aim Point Selection
Technology Final Report" for ONR contract #N00014-92-C-0087).

In our recent ONR program, #N00014-95-1-0859, we evaluated our system
performance using additional IR imagery (from WPAFB, NVEOL and Eglin Air Force
Base) and consistent models and found that the sensitivity to small scale image details
was limited by the nature of extracted curvature regions. Increased sensitivity to
accommodate low resolution imagery typically results in interpreting much of the image
clutter as valid features. Further, curvature regions associated with small target features
often interact, resulting in regions merging into amorphous blobs. Since system
performance is limited by the quality of extracted features, improved feature extraction,
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specifiically curvature region processing, was identified as a critical need.
We developed and implemented effective curvature processing techniques, including

non-linear filtering and region splitting based on curvature strength and feature
orientation, which greatly improved our system’s feature extraction performance. Our
system is now capable of reliably resolving densely packed, interacting, small scale
features. As a result, we were able to demonstrate feature matching between real IR
target imagery and the corresponding model, using only target geometry information. We
have not yet explicitly implemented synthetic IR signature generation.

Our robust local feature extraction approach together with our efficient search strategy
provides the foundation for a powerful ATR system that can deliver the demanding level
of performance required by real battlefield conditions. Our ATR system currently consists
of feature extraction, indexing and intermediate feature matching, and model database
generation modules. These modules can be used independently or together to form the
core of a complete end-to-end ATR system with the promise of extending the operational
range of ATR with respect to reliability, sensitivity, signal to clutter, occlusion, obscuration
and adverse viewing conditions. Our programs with ONR have succeeded in evolving our
ATR technology towards the realization of an ATR system that is capable of practical
performance in the demanding battlefield environment.
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TECHNICAL APPROACH

To accommodate incomplete and/or degraded target signatures (due to occlusion,
poor visibility and other adverse:conditions), a necessary capability for achieving practical
ATR system performance, and to avoid the difficulties of region segmentation, we use
local features, specifically, vertices which, conceptually, are instances of intersecting
straight lines. The vertex features are incorporated into a model-based ATR framework
that is appropriately sensitive to the information contained in these features. The model-
based approach to ATR has shown much promise in achieving high levels of target
discrimination of reduced target signatures in highly cluttered environments (as required
for target identification sufficient for distinguishing between two similar targets in the same
class, e.g., friendly tank from enemy tank in battlefield conditions). The model-based
approach derives target information from target and sensor models, so the target
information is not limited by an unwieldy training set of images and the tedious and
unreliable training task is not required. The model-based approach achieves robustness
of recognition by finding an optimum match between target models and image data
through a powerful hypothesis prediction and verification scheme (seeFig. 1).

However, the powerful MBATR techniques come at the expense of potentially high
computational complexity due to the required search through the space of model
instances for the best match with observed data. An undirected and unconstrained search
performed directly in the image domain cannot be implemented efficiently enough to be

Sensor } Target Target/Environment FLIR ‘

| Geometry Thermal Conditions Phenomenology ‘

i

X Target MOde“ng Stable Feature J
Region of (Off-Line) Model Generation i
Interest '

* Modet Set

Feature Y

’ Extraction | Model Selection I

Hierarchical I Model Manipulations I ] |
Grouping
Image
Description -
Invariant
Representation Model n "
o e Invariant Representation
Transform Description
Transform
T
I}
Image Representation' [ I Model Representation
h 4
Model-Based [lndexing/Search] Evidence A fation Matching
Reasoning
Executive
1 r

Target ID and Recognition
Fig. 1) MODEL-BASED ATR SYSTEM




of practical use in real smart weapons systems. To perform direct matching using feature
locations alone is a problem of Q((Ni*Nm)3) complexity, where N; is the number of
observed image features and N,.,m is the number of model features. Typically, N; could be
1000 and Ny, could be 100, resulting in a problem of immense computational complexity.

However, we have developed a highly efficient directed search strategy using an invariant
representation (a representation that is stable over some useful range of viewing
conditions, such as geometry and thermal properties, in the case of IR imagery) that
reduces and constrains the required search space such that the full power of MBATR can
be realized in a practical implementation.

The first stage of our search uses local, invariant properties of extracted vertex
features, such as angular size and relative orientations, to index into the model database.
The 3D geometric properties of the model are automatically and systematically encoded
into a set of compact 2D representations, where each representation is derived from a
single synthetic view of the object (using appropriate sensor models), which solves many
of the problems commonly associated with the efficient creation and manipulation of
model databases for complex targets. Features from sensor data are analyzed in a similar
way and their invariant properties index into the model database and direct the search
process, yielding hypotheses consisting of candidate representations, their associated 2D
views and potential correspondences of model features with sensor image features. The
generated hypotheses are quickly verified or rejected by performing efficient matching
between candidate sensor and model features, which provides a powerful prediction,
verification mechanism that is highly effective for avoiding false target declarations.

Geometric Reasoning and Model Manipulation

To avoid the unsolved problem of extracting geometric features directly from the 3D
model, which, if done rigorously, involves exploring all 3D surface regions in all directions,
we generate a database of representations derived from the systematic generation of
synthetic 2D images using the appropriate sensor model. Each image is associated with
a different 3D view of the target object. The different views that contribute to the model
database can be associated with points uniformly sampled from a sphere surrounding the
model object where each point defines a location from which to view the object. We have
developed C software modules, using X Windows and Silicon Graphics OGL (Open
Graphics Library) graphics calls (all widely used standards), to perform the necessary 3D
model manipulation and rendering. Our system automatically generates the required
synthetic views (as determined by user specified parameters that control geometry
resolution), extracts features and creates the model data base for a given target.
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Indexing

Indexing generates the hypotheses to be investigated. Indexing is the initial prediction
of target, viewpoint, and correspondence between model and sensor features based on
the most significant features extracted from the sensor image data. In general, a viewpoint
hypothesis is generated based on an assumed specific correspondence between image
and target features, which defines the viewpoint.

To index into the view database, we use Vertex Space, our unique representation, that
decreases the size and dimensionality of the search space required for model to data
matching by exploiting the invariant properties of vertices extracted from images [Whi88].

An extracted vertex (intersecting straight lines or contour segments of maximum
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Fig. 4) 2D OBJECT RECOGNITION USING VERTEX SPACE

curvature) can be essentially described by its location and orientation in the image, as well
as the size of the angle subtended by its intersecting tangent lines. Although the spatial
location of a vertex is highly sensitive to image formation details, its orientation and angle
size are invariant to many of these details but can still characterize essential object
structure. Therefore, our vertex representation emphasizes the two invariant properties,
angular orientation and size. A vertex in image space maps to a point in Vertex Space as
determined by its angular size and orientation, independent of its spatial location in the
image (see Fig. 2).

A Vertex Space mapping is insensitive to changes of scale, translation, and rotation
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within the image plane so it serves as a viewpoint insensitive characteristic signature for
the object. Since Vertex Space is affected only by changes in vertex size or orientation,
Vertex Space is clearly invariant to image translations and changes in scale. Image plane
rotation resuits only in a constant shift in the orientation dimension of Vertex Space. But,
since orientation is defined with respect to an arbitrary axis, only relative orientation is
meaningful (see Fig. 3).The insensitivity of Vertex Space to many of the details of two
dimensional imaging geometry (a useful approximation for high altitude imaging and
objects confined to a plane) results in enormous recognition simplification. For two
dimensional recognition, Vertex Space provides an invariant signature for targets and the
matching process reduces to simple template matching in Vertex Space with no need for
hypothesis generation, since all Vertex Space representations are equivalent (see Fig.
4). In Vertex Space, a single template is sufficient, while If performed using correlation in
the image domain, hundreds of templates would be necessary to cover the required range
of scale and orientation. In addition, the approach is robust with respect to corrupted or
occluded information since each vertex contributes independently to matching
confidence, unlike techniques that depend on reliable segmentation of signature
silhouettes. The usefulness of Vertex Space invariance extends to the more general three
dimensional recognition problem (see Fig. 5).

Three dimensional imaging geometry is characterized by six degrees of freedom,
three associated with translation and three associated with orientation. Without loss of
generality, we can define a composite rotation about three orthogonal axes, such that the
last rotation is about the optical axis. The advantage of such a coordinate system is the
optical axis rotation is equivalent to rotation within the image plane and produces only a
simple constant offset in Vertex Space, which does not affect target signatures. Of the six
spatial degrees of freedom, only the two associated with rotations about axes orthogonal
to the optical axis have a meaningful affect on a Vertex Space representation of an object.
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The corresponding reduction of the search space greatly simplifies the search process for
three-dimensional model to data ‘matching. Matching in Vertex Space provides a
complete specification of viewing geometry (by determining correspondence among three
or more model and image points) so that final matching can be performed by mapping the
entire model object into the image. Vertex Space is used for highly efficient preliminary
matching, or prescreening, and only when a match in Vertex Space is found is the more
costly image space matching performed. Like the two dimensional recognition approach,
described above, three dimensional model-based recognition using Vertex Space greatly
simplifies the initial matching process and provides robustness with respect to occluded
or corrupted data.

In the application of Vertex Space to 3D ATR, the 3D geometric and sensor properties
of a target model are automatically and systematically encoded into a set of compact 2D
Vertex Space representations, where each representation is derived from a single
synthetic view of the object (using appropriate sensor models), which solves many of the
problems commonly associated with the efficient creation and manipulation of model
databases for complex targets. Features from sensor data are analyzed in a similar way
and their invariant properties index into the model database and direct the search
process, yielding hypotheses consisting of candidate representations, their associated 2D
views and potential correspondences of model features with sensor image features. The
generated hypotheses are quickly verified or rejected by performing efficient matching
between candidate sensor and model features, which provides a powerful prediction,
verification mechanism that is highly effective for avoiding false target declarations.

SEARCH STRATEGY

Our emphasis in the development of techniques to perform model to image matching
is efficiency with respect to clutter and robustness with respect to missing or corrupted
image data. An important issue, closely related to computational efficiency, is the
matching mechanism. Matching 2D image data directly to 3D models is a difficult problem
since it requires detecting all potential 3D features that could project to a 2D feature,
which, if done rigorously, requires examining regions, in all possible directions, about
every surface point. Even if these points could be effectively found directly in the 3D
domain, many more features than necessary would have to be considered
simultaneously, since only a small subset is typically visible from any single view (e.g., all
edges of rectangles that approximate a cylinder must be considered as possible matches
with a straight line in an image, even though, typically, only two will ever be visible at the
same time). In contrast, it is straightforward to match 2D critical points extracted from
images directly with 2D projections of the model. For this reason, we generate a database
of views of a given 3D target model and perform matching with the set of views rather than
the model itself.
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To avoid the complexity of exhaustive image to model feature matching, we use
feature atiributes and the invariance of Vertex Space to direct a multi-stage search
process. The search strategy, is hierarchical where viewing geometry and feature
grouping is constrained incrementally so that each search level performs a small subset
of the whole search, greatly reducing the combinatoric complexity, and subsequently
reducing the data that must be considered at the next stage (notice the data flow structure
in Fig. 13).

The first stage of the search exploits the invariant properties of Vertex Space to
efficiently index into a model database of views using a hash table indexing approach
which is an excellent match with Vertex Space since hashing techniques require a binary
array representation, that Vertex Space naturally provides. The result of Vertex Space
indexing is candidate model views and image to model feature correspondence. The
hypotheses generated by indexing are then checked for orientational consistency, which
determines an offset angle of image rotation. Surviving candidate features are then
evaluated to determine positional consistency, which is the first stage of the search
process that uses any feature location data. Positional consistency is based on predicted
orientations of lines defined by feature pairs, so scale information is not needed. The
surviving features are finally checked for scale consistency. The result is a
correspondence between image features and model features as well as a full approximate
description of the viewing geometry.

The model to image feature correspondence can then be used to refine the viewing
geometry which, in turn, can be used to map the complete target model into the acquired
image for final correpondence determination. The final stage involving analysis of the
complete target model is costly, but is only performed when there is high confidence that
a target is present as a result of the efficient feature matching search. The constraints
enforced by the feature matching process ensure that false alarms will be unlikely. It can
be readily seen that, while our approach is efficient, each step of the search process is
directed by the results of previous steps, it can also accommodate missing features since
the search process is valid for any subset of features. We describe the details of our
search process in the next section.

Search Approach: Curvature Directed Search Using Vertex Space

Our multistage search process begins with indexing. Indexing is the initial prediction
of target, viewpoint, and correspondences between model and sensor features based on
the most significant features extracted from the sensor image data. Indexing generates
hypotheses to be investigated. Specifically, viewpoint hypotheses are generated based
on candidate correspondences between image and target features. In addition to
viewpoint, other conditions affecting target signatures are considered, e.g., thermal
properties via the appropriate sensor models.

The off-line preparation of an indexing database requires extensive manipulation and
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analysis of the target model. However, real target models can be highly complex making
manipulation difficult. To avoid the difficulties resulting from 3D target model feature
analysis, we produce a compact database of Vertex Space representations derived from
the systematic generation of synthetic views of the target model, using the appropriate
sensor model. Each 2D image generated is associated with a different 3D view of the
target object. The different views that contribute to the mode! database can be associated
with points uniformly sampled at some specified resolution from a sphere surrounding the
model object where each point defines a location from which to view the object.

If not for the invariance of Vertex Space, we would also need to consider points of
varying distance along rays centered on the object (spheres of different radius) and, at
each point, different rotations about the optical axis. However, the translation (including
scale) and rotational invariance of Vertex Space requires that only a single view from each
point on the tessellated sphere be generated.

Analytically, the viewing geometry transformation that maps a point, whose location is
determined by the 3D position vector, x, to the transformed point, X', is described by the
3D transformation

X' = Rz(ez)(Rx(Gx)Ry(ey)) X+s

where Ry(8y) represents a rotation of 8, about axis k, and s is a translation vector. Vertex
Space is invariant with respect to s and will only be shifted by a constant amount, 6,, along
the orientation axis. To achieve complete invariance with respect to R,(6,) (rotation within

the image plane), we normalize Vertex Space by mapping all pairs of vertices within the
same size bin to Normalized Vertex Space bins based on the average size of the vertex
pair and a relative orientation, found by taking the difference between the two vertex
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Fig. 7) BUILDING HASH TABLE ASPECT MODEL DATABASE
Viewing Geometry Defined By:
X = Rz(ez)(Rx(ex)Ry(ey)) X + S NORMALIZED VERTEX MAP

OR.
Only Part of Transformation that X

effects normalized vertex space -
View Determined by (8,, 8y) . -

o s SIZE
= %(

he

VARVZAN

AV ARV

(optical axis) <
IMAGE {g)
ASPECT VIEW SPHERE from view, (6. 6,)
each yaew gsed in Hash Table OR. SIZE
is defined by (s,, 6,)
HASH TABLE

each vertex adds view,

(8. 8y) to hash site array
orientations in the pair (see Fig. 6). Normalized Vertex Space removes the dependence
on orientation offset by considering only orientation differences. Forming vertex pairs
results in an increase in the number of features (N -> N * (N-1), where N is the number of
vertices in a size bin) that must be analyzed, but relative orientation information can be
used to realize much more distinctive Vertex Space signatures than size information
alone, resulting in more robust indexing, which increases the efficiency of the subsequent
search stages. We form pairs based on vertices with similar size attributes since many
targets of interest have symmetric features. When symmetric features undergo viewing
transformations, they tend to maintain size similarities. Forming pairs from all possible
feature pairs would result in too many features. In dense data domains (highly complex
targets, high resolution imagery or high clutter) it may be more appropriate to use
standard (unnormalized) Vertex Space and perform indexing with explicit quantized
orientation offsets on single vertices to avoid forming too many vertex pairs. The details
of determining which approach to use, single vertices and absolute orientation in standard
Vertex Space or vertex pairs and relative orientation in Normalized Vertex Space, will be
developed in the complexity analysis below.

We proceed by synthetically generating each of the views defined by the tessellated
sphere. We map the resulting synthetic image to normalized Vertex Space and, for each
vertex, we enter the current view index number into a hash table at the corresponding
normalized Vertex Space site so that the hash table accumulates all the view indices that
are associated with each observed vertex in Vertex Space (see Fig. 7). As mentioned
earlier, by using an aspect hashing graph to represent geometric object information, we
avoid one of the more difficult problems associated with model manipulation, which is the
determination, from the model, of visible features. Rather, we generate all required views

12 of 49




Fig. 8) 2 STAGE INDEXING - First Stage:_
Using HASH TABLE to find View Paramaters, (8, 0y)

VIEW
HYPOTHESIS

8- By)

OBSERVED
IMAGE

HASH TABLE 7
each vertex site contains
an array of views, (8y, 8y) View #

VIEW HISTOGRAM

explicitly, off-line, so the visibility of edges is determined via the synthetic image
generated for each view used to build the hash table. We have automated the hash table
generation process so the hash tables can be generated for any object that has a model
in our system and both view angle and hash table angle resolutions can be specified. We
perform hash table generation, model manipulation, synthetic image generation,
algorithm design, implementation and evaluation on our MB-ATR system testbed which
uses the C, Unix, X Windows and Silicon Graphics GL graphics standards.

We employ a two-stage indexing process using the hash table to determine viewpoint
and model to image vertex correspondence. In the first stage the By, 6x parameters are
found by mapping the observed image to normalized Vertex Space. For each vertex
mapped, the corresponding hash table site is accessed and the set of views stored at the
site are distributed into a viewpoint histogram. The resulting peaks indicate candidate
views (see Fig. 8).

The 6y, B view parameters found from the first stage of the indexing process are used
to identify a candidate model Vertex Space map, which is compared to the image Vertex
Space map. Sets of potentially corresponding model and image vertices define an index
into 8, values, the final parameter required to completely specify object orientation.
Specifically, we recover 6, and the model to image vertex correspondence from the
second stage of indexing. The hash table indexing provides a (8y, 0y) hypothesis and
associated model Vertex Space representation which is compared to the observed image
Vertex Space representation, which is not normalized (normalization is only required for
the first stage of indexing). A correspondence between a model and image Vertex Space
entry defines an offset angle, 6,. The resulting value is accumulated in a 6, histogram and
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Fig. 9) TWO-STAGE INDEXING - Second Stage:
Find 6, (Orientation Offset Angle)

® process determines model to observed vertex correspondence
e vertex correpondence used to find all viewing geometry
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any peaks indicate candidate 9, values (see Fig. 9). Once a model Vertex Space map is

identified, additional constraints can be derived from positional properties of the object
view, which can verify or reject the working (6y, Bx, B;) hypothesis and further constrain

the viewing geometry and model to data vertex correspondence, as described below.

Our indexing scheme requires mapping continuous data into discrete grids so it is
subject to quantization error, where vertex entries straddle bin boundaries, which can
seriously degrade performance. The quantization error is aggravated by smaller bin sizes,
which introduce more bin boundaries, thereby increasing the likelihood that vertex entries
will fall near bin boundaries. To solve this problem, we distribute hash table entries about
the single bin determined by the quantized values. A table entry is placed in the discrete
bin it normally falls into, and is also placed in its (three) nearest neighbors bins with
weights determined by the distance from the desired continuous value of the table entry
to the center of each bin (see Fig. 10). This ensures that angular values that straddle bin
borders still register, even if they should cross over the bin boundary, which allows for
increasing the bin resolution arbitrarily without concern for adverse quantization effects.
This approach has effectively removed all problems associated with discrete quantization
error.

The result of the indexing process described above is a candidate (By, 6x) view, and
0, optical axis rotation and candidate correspondence between model and image
features, which typically identifies a small subset of all image features. The (8y, 6y, 6,)

hypothesis is equivalent to defining a properly rotated (in the image plane) 2D view of the
model object. It is still necessary to determine the translation and scale transformation (a
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Fig. 10) CONTINUOUS HASH TABLE ENTRIES
An area the size of a hash bin (indicated by cross-hatching) is centered around the
continuous hash table value (indicated by the dark circle). A value is stored in each
hash bin equal to the size of the overlap area. In this case, bin a would receive the
highest entry value, followed, repectively, by b, d and c.

subset of the general affine 2D transformation) required to align the hypothesized view
with the observed data. Determination of the required 2D transformation requires
matching an image pair of features with a corresponding pair of model features (assuming
each feature has a well defined point location). Verification of the hypothesized 2D
transformation requires at least one further model to image feature pair correspondence.
So the geometric matching problem, after the indexing stage, reduces to a pairwise
search.

We employ simple geometric constraints to determine and verify the 2D
transformation necessary (along with (By, Bx, 6)) for fully defining the viewing geometry.

Nas

1

Model Object Candidate Vertices - ;

Fig. 11) POSITIONAL CONSISTENCY IN 6, INDEXING

Based on the Vertex Map derived from (By,0y) indexing alone, image vertices 1 and
2 and any of 3, 4, 5, 6, or 7 could be potential matches with the model object. How-
ever, if we incorporate simple positional information that could be stored with the ver-
tex data, the ambiguities could be readily resolved. Specifically, the angle 13 makes
with 23 would reduce the possibilities for the third vertex to either 3 or 7. When the
additional constraint imposed by 32 with T2 is considered, only one choice (#3)
remains. No scale information is required.
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Fig. 12) CONSISTENCY MATRIX, C - Drives Pairwise Search:
e C stores binary results of all pairwise consistency checks
® look for vertices that are consistent with a common vertex

(look for matrix rows with common elements,
candidate rows determined by elements in prior rows)

® choose reference index based on most consistent pairings, Ty,

V1 v2 v3 y4 y5 y6 y7 y8 9 y10 V4, V6, V7, V9 are mutually consistent
vy b @t BB ®|*[ 5\ * pairwise consistent
Vo ( ~ 0 &)verified pairwise consistency,
Vj | : 3K KK 4 (consistent with 2 or more vertices)
Vs | ! CICIRE 4
Vg \ x| 2 Tm, # of Consistent Pairings
for vertex m
Vs ® (@ |5
A\ | 4
. | To=2Cr + >c
Vo | Vi : ot \t K m= &k k=m+1 11
1 | IS consisten T xRN N
Viofid iz J withVi b 1 j (for N vertices)
i 0if Vi is not consistent

with Vj

While the indexing process deals exclusively with local properties of individual vertices
(e.g., angle size and orientation), the remaining search uses vertex positions. Without
knowing scale, we can infer, from the model, the orientation of a line connecting any two
corresponding image vertices. Therefore, one candidate image vertex constrains each
other candidate image vertex to a specific line. Once an additional candidate vertex is
found to lie on the line specified by the first, the two constitute a consistent candidate
vertex pair that completely constrain the locations of all other candidate vertices and
define the viewing geometry (by determining the previously unknown 2D translation and
scale transformations - see Fig. 11).The viewing geometry specified by such a base pair
can then be verified by the remaining candidate image vertices.

To perform this pairwise search and verification process efficiently, we do a breadth
first determination of all possible pair consistencies and store the binary (*1" for
consistent, "0" for not consistent) results in a consistency matrix, C. The remainder of the
search can then be highly directed by geometric consistency constraints. The total
number of potential mutually consistent candidate vertices, T,,, associated with a single
reference vertex is the sum of all "1" entries in all matrix elements associated with the
reference vertex. The search starts with the single reference vertex having the highest
number of potential matches, as indicated by T,,. All “1" entries in the base reference row
are consistent with the reference vertex. Each of these entries can be used to reference
another row. All entries common to these two rows are mutually consistent and satisfy all
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Fig. 13) HIERARCHICAL, DIRECTED SEARCH STRATEGY
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into simpler search components
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geometric constraints. Therefore, we select a first reference row based on the T, values.

For each entry in this row, the corresponding row is checked for common entries, which
must be mutually consistent. This process is repeated, for descending T, values until the

minimum required number of verified image vertices are found or until there are no more
rows with T, values equal to or greater than the minimum required match number (see

Fig. 12).

Once the image set of vertices that matches with the model object has been identified
and the viewpoint determined, the model object can be mapped into the image for a final
image domain correspondence determination, fully verifying or rejecting the Vertex Space
hypothesis.The matching vertices that contributed to the view determination can be used
to find a least squares solution that will precisely refine the viewing geometry estimate
found in the matching process described above.

Our overall search strategy decomposes the computationally intensive end-to-end
model to image matching search into smaller search components. Each of these is far
simpler and computationaly more tractable than the global search as well as further
constraining and determining the imaging geometry and establishing candidate image to
model vertex correspondences. These search components are hierarchicaly related such
that each level further reduces the amount of image data that must be dealt with by the
next level (as represented by the line widths in Fig. 13) in a "divide and conquer" strategy.




Feature Based Matching Complexity Analysis

To analyze the complexity of our model to image feature matching search strategy, we
make the distinction between the first module of the search, indexing into the 3D view and
the second module, which verifies (or rejects) the 3D view hypothesis and determines the
appropriate 2D transformation which includes both scale and translation information (see
Fig. 13). In the following analysis, VS is Vertex Space, and we make the assumption that
vertices tend to be uniformly distributed over Vertex Space, which of course is not strictly
true, but, from subjective observation of clutter experiments, it appears to be a reasonable
approximation.

N; is the number of Image Vertices, M; is the average Image VS bin Population

Np, is the number of Model Vertices, My, is the average Model VS bin Population
(average for all views)

Ngj is the number of VS size bins, Nor is the number of VS orientation bins

(Therefore, assuming uniform distribution,
Mi=Ni/(Nsi*Nor) , Mm=Nm/(Nsi*Nor) )

Ny is the number of (6, Oy) views, N, is the number of (6,) offset values
From our experiments, we have found the following values to be effective:

Nsi = 18, Ng, = 36 (from 10 degree quantization)

Ny = 178 (15 degree step size) ; N, = 24 (15 degree quantization)

3d View Indexing
We use three different versions of 3D view indexing: 1) no orientation, 2) relative

orientation and 3) absolute orientation. The efficiency of each is dependent on the amount
of image clutter, complexity of the target, and resolution of Vertex Space. The first version
uses size information alone, which produces many view hypotheses since size alone is
much less discriminating than size and orientation together, however, the use of feature
pairs, which increases the number of features to be analyzed, can be avoided. Image
pairs are formed to exploit relative orientation which is encoded in the Vertex Space hash
table. The resulting view hypotheses are stronger due to the combination of size and
orientation discrimination, however, there are more features that must be analyzed.
Finally, we encode absolute orientation into the hash table and use single features, which
requires that we explicitly shift the orientation of Vertex Space to accommodate the Ng

orientation offsets.

- No Orientation (no) Information
For no orientation information, the indexing process involves accessing the Vertex
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Space Hash Table (size only) with the size value of each image vertex. At each Hash
Table site there are M,"° view entrigs, so there are a total of M,"° * N; operations to be

performed. M,"° can be approximated by multiplying the probability that any given model

vertex will map to a given Hash Table size bin by the number of views, which is
(Nm / Ngj) * Ny (where (Np, / Ng;) is constrained to less than or equal to 1). So the

complexity is
C1"% = N; * (Nm/ Ngj) * N,
- Relative Orientation (ro) Information
To use relative orientation information, the N; vertices form vertex pairs with other
vertices that fall within the same size bin, each of which defines a relative orientation value
used to access the Vertex Space Hash Table. There are N;%/Ng; such pairs. At each Hash

Table site there are M, view entries, which result in (M, * N;2) / Ng; operations. M,",
the probable number of views at a given Hash Table site, can be approximated by the
probability that a given view will have at least one model vertex pair entry at a given site

times the number of views. So M, is N2/ (Ng2 Ng, ) and

C1™y = ((N?#Np?) / (Ngi® Nor) ) * Ny,

- Orientation Offset Consistency
View indexing with no orientation information or with relative orientation information

defers dealing with absolute orientation values. Absolute orientation is found by
determining orientation offset consistency, that is, each candidate model to image vertex
match defines an orientation offset which, in turn, defines absolute orientations. For
consistency, the same offset orientation must apply to all model to image vertex
associations in the same hypothesis, so these groupings are all placed in the appropriate
offset bin for further analysis. This operation, which follows the first indexing stage
described above requires Ny, ™ M; operations. This is the number of model vertices (Nm)
times the number of image vertices that could be associated with each model vertex (M;).
Each model vertex (from a given view) is assigned to a Vertex Space bin and all image
vertices that fall within the same bin are candidate matches for the model vertex. Using
the uniform vertex distribution assumption, there are

M;=N;/ (Nsi Nopr)
image vertices in a given Vertex Space bin, which we approximate with,
(N; Npm) / (Ng; No,). This term must be added to C1™ and C1'© since it represents the
second stage of the view indexing module, however, it is clearly negligible with respect to
both C1"° and C1, so it can be ignored and we have
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c1mo = (N; N,/ Ngi) Ny
and '

C1%® = ((N; Npm)* / (Ngi® Nor ) ) Ny

- Absolute Orientation (ao) Information
View indexing using absolute orientation information involves accessing the Vertex

Space Hash Table with each of the extracted image vertices for each of N, offset values.
Therefore, N; * M,?° * N, operations are required, where M, ° is the probable number of

views residing at any Hash Table element, approximated by (Nm / (Ngi Ngp)) * Ny, The
complexity for view indexing using absolute orientation is

C1%° = ((Ni Nm) / (Nsi Nor)) No Ny

3D View Indexing Comparison
Since the resolution of orientation bins and orientation offset bins must be similar for
consistency (although they do not need to be identical), Ny, ~ N, , so C12° ~ C1"°,

Therefore, in terms of computational cost, indexing with no orientation information is
comparable to indexing with absolute orientation information since the reduction in data
per bin is directly countered by an explicit orientation offset overhead. The complexity
(from above) is (N; Ni, / Ng;) Ny, , so data reduction results from subdividing into size bins,
the orientation grouping does not enter into the complexity of the first search module. We
compare this complexity to that of indexing using relative orientation information

cio (NN (N3N ) - N,
Ciac —  ((N;N,)/Ng)-N,

Cilro N;N.,

Ciae - NgiNor

Therefore, absolute orientation indexing becomes more efficient when
N;N.,, > NZ;N_,, which is the case for high data environments (complex models and high

clutter, unsegmented imagery). Using the nominal values for Ng; and N, (18 and 36

respectively), NZN . = 10,000. So when N; N, > 10000, that is any combination of the

number of image vertices in a group times the number of model vertices per view is
greater than about 10000, absolute orientation indexing will be more efficient than relative
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orientation indexing.

3D View Verification and 2D Transform Determination
This process is dominated by performing all pairwise associations on the

Nc = Nm Mi
= (NmNi) / (Nsi Nor)
candidate image vertices for each view hypothesis. Since for N elements there are (N *
(N-1) / 2) pairs, the complexity is given by (NmMi)Z, SO
C2 = (N, Ni/Ng; Nor)2

Here we can see explicitly the role of Vertex Space in reducing complexity. Without
Vertex Space, we would have complexity (N,N;), so Vertex Space reduces N, and N;

each by a factor of (1 / Ng;j No,), so the reduction in complexity is (1 / Ngj Ng,)?.

End-to-end Feature Matching
For low clutter (Ic) environments where a clear peak for indexing into the view
parameters (Gy, By, 6,) can be found, only a single view need be investigated. In this case,

the end-to-end complexity is just
cl°=c1™ +C2
= ((N; Nm)2 / (Nsi3 Nor) ) Ny + (NjNy/Ngi Ngp) 2

At the other extreme, very high clutter (hc) environments with respect to model
complexity, useful peaks will be significantly degraded. In the worst case analysis, we
assume that all views will need to be investigated. The resulting complexity is

che=c12° +C2
= ((Nj Np) / (Ngj Nop)) Ng Ny, + (NjN/Ng; No,) 2 No Ny
= [ ((Nj Npy) 7 (Ng; Ngp)) + (NjN/Ng; Noy) 2 1 NgNy

where there are NyN, view hypotheses which could be investigated. For this case, the
second term clearly dominates, so we have

Chc = NoNv(NiNm/Nsi Nor) 2

that is, the search is proportional to the number of views in the model database times
(NiN.,)? reduced by a (1/Ng; Ng;) 2 factor, which acts to counter the effect of the multiple
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views. Essentially, we have a second order (in number of feature pairs) computation
versus the direct model to image ‘feature matching approach which is a third order
problem. For large numbers of features, the computational savings is significant. The
currently implemented approach does not assume any segmentation. That is, all image
vertices are considered together as one large group. If grouping schemes are
implemented (e.g., vertices grouped by proximity, perceptual significance,...), then only
subsets of the image vertices will be considered at one time, which can greatly reduce the
computational burden.

After the feature based search is performed the final phase of the search involves
mapping the entire target model into the image for image domain correspondence
determination. While this is a relatively costly process, it is rarely required due to the
powerful prescreening ability of the feature based search.

STABLE FEATURE EXTRACTION

Feature based matching for ATR is critically dependent on the stability of extracted
features. It is crucial that small changes in viewing conditions (e.g. geometry, lighting,
occlusion,...) do not result in substantial changes in the features extracted. In developing
our high level feature matching search strategy, the emphasis was on search techniques
and the task of extracting features from the image was deemphasized. During that stage
of the program, only idealized vertex features were used. Simple, idealized, wire frame,
polyhedral models were used which yielded unambiguous vertices that were simple to
extract. The idealized image vertices were just instances of straight line edge
intersections. To extract these vertices we used straightforward standard techniques.
Edges were extracted from images of simple models by calculating the gray level gradient
magnitude and then thresholds. Since wire-frame models were used for rendering
images, edge thicknesses were normally one pixel.

Edges were mapped to contour structures by sequentially storing pixels along the
edge, which imposed pixel ordering on the extracted edges. Curvature was calculated
along the contours and thresholded to find vertex sites. Curvature calculations required
finding derivatives numerically along the extracted contours, which was implemented by
convolving with derivatives of the Gaussian. Convolution with Gaussians has been shown
to be a stable, efficient and scale selectable technique for finding derivatives of image
contours.

Our simple extraction techniques were adequate for development and evaluation of
our search strategy, however, much more sophistication in feature extraction is required
for real, complex models and imagery even though the search techniques still apply.
Realistic treatment of complex models (usually containing thousands of facets) requires
image rendering using artificial light sources, simple wire frame renderings are not
adequate. Consequently, variations in contrast must be dealt with. Further, the complex
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Fig. 14) COMPLEX 3D TARGETS - rendering and feature extraction

M2 Tank (FRED file)
1790 Facets

Wire Frame Rendering
(no hidden line removat)

Rendering with Lighting Processed Traced

Edge Extraction from
Rendered Image

Contours and Vertices
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Fig. 15) COMPLEX 3D TARGETS - difficulty of curve tracing

M2 Tank (FRED file)
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nature of the targets results in complicated topologies making contour tracing difficult and
many important features, such as curvature extrema, can not effectively be treated as
ideal vertices. Also, extracted edges often vary in width so that both edge breaks and thick
edges are common occurrences. A more subtle problem related to our ATR application is
the need to extract only significant features that aid the recognition process and reject
features that can not be reliably extracted and only confuse the ATR system. A complex
target model consisting of thousands of facets can easily generate so many features that
the search component could be overwhelmed. So one of the requirements of the feature
extraction component is reduction of target signature to manageable levels.

To address these issues, we extended the feature extraction techniques developed for
simple wire frame models. To deal with broken edges and thick edges we performed
morphological processing on the extracted edge image. To fill holes we performed
morphological dilation, which fills in small holes and thickens edges. The thick edges
cause a problem when contours are traced, since the contours can wander within the
thickened edges. Therefore, we followed dilation with thinning, which reduces the
thickened edges to a nominal one pixel thickness (see Fig. 14 and 15).

To deal with complex topology, which results in ambiguous curve tracing when
branches are encountered (see Fig. 15), all branch and end points are identified in the
processed edge image (see Fig. 16a). Then the image is scanned until a branch or end
point is encountered and all connecting contours are scanned until another branch or end
point is found. The basic technique used to extract branch and end points is examination
of all edge points using a circle centered on the point of interest. The circle boundary is
scanned to determine the number of edges encountered (Fig. 16a). One edge indicates
the presence of an end point, two edges indicates a simple edge point and three or more
encountered edges indicate a branch point.
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Fig. 16a) BRANCH / END POINT EXTRACTION

]
END POINT EDGE POINT BRANCH POINT
1 Perimeter 2 Perimeter 3 or More Perimeter
Edge Intersection Edge Intersections Edge Intersections

Although the thinning process normally results in single pixel edges, there are
exceptions, especially in the vicinity of branches. Therefore, non-edge to edge transitions
are counted instead of edge pixels. Also, edges that approach each other to within a
distance less than the circle radius used should not be considered in the edge count since
the edges are not explicitly connected (small holes have already been filled by the dilation
process). Therefore, we require edge pixels to be connected to the center pixel of the
circle through an edge segment to be considered. This process results in branch or end
point regions, which consist of groups of connected pixels at branch or end locations.

Fig. 16b) BRANCH / END POINT PROCESSING
Replace extracted branch/end region with
single point surrounded by the most neighbors

““““mnuu...
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Fig. 17) COMPLEX 3D TARGETS - baseline feature extraction results

M2 Tank (FRED file) 66 Vertex Locations
1790 Facets i 101 Vertices

Dilated and Thinned Processed Traced
Edges Contours and Vertices
Each branch/end region is collapsed to a single pixel by replacing the region with the
single branch/end point pixel with the most neighbors. This typically results in a
subjectively optimum selection of branch/end points (Fig. 16b).

Any extracted contours less than a minimum length are rejected because it is likely
they are not significant features that can be reliably extracted and will confuse the
recognition process rather than aid it. The remaining contours are examined for curvature
extrema (as described above). Vertices consist of the union of branch points and
curvature extrema. A vertex thinning process, where groups of vertices within a small
neighborhood are replaced by a single vertex as determined by a neighborhood filter (as
described above), is used to eliminate redundant vertex detections. Vertex parameters
are found by calculating angles between lines from the vertex location to edge
intersections with a circle centered on the vertex site.

This process results in what appear to be reasonable vertices (Fig. 17), however,
when integrated into the ATR system, recognition performance is poor. Upon
examination, it can be seen that the extracted vertices are very unstable with respect to
small changes in viewing geometry due largely to artifacts introduced by the thinning
operation (Fig. 15). We have developed one solution, which avoids thinning by optimal
contour tracing of thick edges. A filter is used that stores at each pixel the number of edge
pixels in its neighborhood. Contour tracing proceeds by progressing from one filter
maximum to the next a set number of pixels away. If the filter output is considered to be
a 3rd dimension of the dilated edge image, then our optimum contour following is
analogous to following the ridge defined by the filter output local maxima.

While this approach seems promising and may provide a useful alternative to
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morphological thinning, we believe that vertex features can best be extracted using a
direct local approach that does not require explicit edge and contour extraction. The
topology of complex objects can be arbitrarily complicated, making any explicit edge
following technique difficult and limited in applicability. Further, direct treatment of scale is
required since scale can have a significant effect on the nature of vertex features
extracted from imagery. In addition, calculated vertex parameters should be stable with
respect to the precise location of an extacted vertex.

To address these issues, we consider the geometric definition of curvature to motivate
our approach. .

If

F(x,y) is the image gray level at pixel site (x,y) and

C(x,y) is a contour pixel where the gradient of F(x,y) is a local maximum and
T(x,y) is the UNIT tangent of C at (x,y) and

N(x,y) is the UNIT normal to C at (x,y) (gradient direction)

N Fy F,
so N = (6’6

) whereQ = /F2+ FJ , the magnitude gradient

o

then Curvature is K(x,y) = 121%?()(’ y)l where j_é is the derivative of °

along the curve contour in the tangent direction

let R = %?(x, y) and the components of R be Rx and Ry,

suchthatR = (Rx, Ry), then K = ’ﬁl

d d d
So Rx = (ﬂTx~Tx)+(WTx~Ty) and Ry = (ﬁTy-Tx)+(

a4
dy
we know from the properties of the unit tangent and unit gradient that

Ty Ty)

TeN=0 (from orthogonality); and (Tx)2+ (Ty)2 = 1
so (Tx-Nx)+(Ty-Ny) =0

N Ny\?
therefore Tx = —(N—Q'Ty and (Tx)? = (N;O (Ty)?

Then (with Z—IO: = F.)
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K = ([(Fyx : Fy)“(Fyy;Fx)]z-'- [(ny' Fx) _(Fxx' Fy)]2)1/2
QZ

(whereQ = /F} +F2)

and finally, after noting that Fxy and Fy, are equivalent, we have

_ ([(ny Fy) —(Fyy ) Fx)]2+ [(ny ’ Fx) —(Fxx : Fy)]Z)I/Z .
B Fs+F2

K

While this expression for curvature has a theoretical basis, there are many practical
issues that must be considered. One issue is the well known numerical instability of
calculating high order spatial derivatives of images. Numerical differentiation tends to
accentuate high frequency noise and the effect is more pronounced for successively
higher orders of differentiation. Also, in our application, we are most interested in small
contour regions where branching or a high level of curvature occurs. These are regions
where good numerical differences, which are required for the derivative calculations, are
not well defined because image gray scale is changing quickly and in complex ways.
There remain the questions of scale analysis and stable vertex parameter determination.

Therefore, although we have implemented the curvature calculation derived above
(Fig. 18), we use it primarily as a point of departure. Rather than using numerical

Fig. 18) DIRECT CURVATURE CALCULATION
Using Principal Axes for Orientation

Gradient Magnitude Extracted Curvature
of Tank Image
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curvature explicitly, we use it as a conceptual guide to a more practical implementation.
Conceptually, geometric curvature fs a measure of the change in orientation along an
edge contour. Using this curvature concept, we proceed by finding local orientation at all
potentially interesting points (points where there is a non-zero gradient magnitude) in the
image. The calculated orientation is analyzed by finding points where local orientations
implicitly intersect. This is achieved by implicitly projecting a small distance in the direction
of the local orientation and checking for the existence of a different orientation along the
projection. For stable vertex detection, the implicit orientation change conditions
described here must persist over some specified scale. Therefore, points of high
curvature are found not only based on absolute changes in orientation but also by
requiring the changes to occur along the direction of orientation, which is consistent with
the spirit of geometric curvature.

To determine orientation at the lowest scale (highest sensitivity), we use the
components of the gradient, where the x and y difference components are found using
1x3 (and 3x1) kernels. However, sensitivity is achieved at the cost of stability. To get more
stable values at higher scale we would normally increase the size of the kernels used to
calculate the derivatives, however, this often results in increasing the ambiguity of the
gradient calculation. To see one example of this, consider a strong, but narrow vertical
step edge in an image (from left to right, light to dark to light). For a small kernel, the gray
level difference in the x direction will be maximum at the optimal location where the
gradient kernel straddles the step edge. If we increase the size of the kernel beyond the
end of the step edge the x component value will decrease and the gradient output will be
correspondingly degraded.

Alternatively, we calculate the principal axes of a region centered about each point of

Fig. 19) IMPLICIT EDGE ORIENTATION DETERMINATION

e PRINCIPAL AXIS DIRECTION
(high stability, large kernel size)
- principal axes are associated with maximum and
minimum moments of inertia, and align with
predominant directions

Axis of MINIMUM
momemt of inertia

Axis of MAXIMUM
momemt of inertia
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interest. Principal axes define dominant directions, or orientations in a region. In rigid body
analysis, principal axes define axes of stable rotation for an object and will necessarily
coincide with any axes of symmetry (see Fig. 19). To apply the principal axis calculation
to imagery, mass density becomes the image gray scale value and we use only the two
image dimensions, x and y. Principal axes are found by solving the two-dimensional

Eigenvector matrix equation IR = AR where the two Eigenvector solutions are the

principal axes and are necessarily orthogonal to each other. Here | is the moment of
inertia matrix whose elements are
_ Exx Ixy:l
i ey lyy

and Iy = Y [F(X, y)(r*d;-x;x,)] where F(x,y) is the image gray level at
realon

location (x,y) and r? = x>+y2. The matrix equation yields a secular equation,

[l —kA] = 0 where A is the identity matrix. So the Eigenvalues (moments of inertia about

each axis) are

(e Ly ) £ {0y + 102 =4l d 12 )31/
- 2

I
and IxxRx+IxyRy = ARx or Rx = (ﬁ)Ry , Which defines the relations
XX

between the Eigenvector components. To get actual component values, we impose the

constraint that the Eigenvectors be unit length ( (Rx)?+(Ry)2 = 1 ). This procedure
yields two Eigenvectors, one parallel to the orientation and one perpendicular. We choose
the vector that corresponds to the minimum gray scale variance, which should be parallel
to the local orientation A combination of the gray scale variance and ratio of the two
Eigenvalues serves as a quality metric for each orientation value (small variances and
large Eigenvalue ratios correspond to good, unambiguous orientation values).

Having found the local orientations, we often wish to do some postprocessing, such as
weighted average smoothing using orientation quality measures for the weighting. For
any manipulations of this kind it is important to remove inherent orientation discontinuites
that result from the discontinuous numerical values used to describe continuous
orientations (e.g., an orientation of 1 degree is relatively close to a 359 degree orientation
although the numerical difference is large).

First, we note that, for our purposes, the direction sign of a vector is superfluous since

30 of 49




Fig. 20) IMPLICIT EDGE ORIENTATION ANALYSIS -
CRITICAL POINT DETECTION
* Find consistent surrounding orientations

e Compare consistent orientation values

Orientation CONSISTENT Orientation CONSISTENT
with center reference with center reference

Orientation NOT CONSISTENT
with center reference

the same orientation is described equivalently by a vector and its negative. To remove this
redundancy, we impose the constraint that all vectors be normalized to point to the first or
second quadrant (O to 180 degrees), which can be implemented by negating any vector
whose y component is less than 0. The orientation angle of the vector is then doubled so
the range is O degrees to 360 degrees. While the orientation values are not continuous,
the corresponding transformed vector components are. Therefore, all operations are
performed separately on the transformed vector components since vectors that define
similar orientations will necessarily have similar transformed vector components and
numerical discontinuites will be avoided. After processing, the inverse operations are
performed on the resultant vector to find the true orientation.

The processed image orientation field is analyzed to extract generalized vertices
which do not necessarily fit the idealized vertex model of two intersecting straight lines. A
small circle centered on each point of interest (any point not inside a uniform gray level
region) is used to examine the neighborhood. Any point on the circle whose orientation
projects near enough to the center reference point is considered to be on the same implicit
contour as the reference point, regardless of other region details (see Fig. 20). Therefore,
two points can be assigned to the same implicit contour even if there exist contour "holes"
between the points. If multiple adjacent points on the circle are found to be implicitly
connected to the center reference point, they are replaced with the single pixel whose
orientation projects closest to the center point, which effectively insures that implicit
contours will be one pixel thick.

This process leaves one pixel on the circle for each implicit contour segment. These
pixels are further examined for orientation consistency by stepping outwards in the
direction of their orientation. If the priority is sensitivity, it is sufficient that the orientation
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at each step be consistent (project near enough) with the previous pixel. If, however,
stability is required over sensitivity, the orientation at each step must be consistent with
the original reference pixel, which is a more restrictive condition than that used to achieve
higher sensitivity. In the former case, curved contours can be extracted while the latter
case requires that contours be essentially straight within the range of consideration. By
varying the range of consideration we can control the scale and stability of extracted
vertices so that very small features will not be extracted even if they appear to be highly
curved.

Implicit contour segments that are orientationaly consistent over the required steps are
used to determine whether or not a vertex is present. More than two implicit contour
segments indicates a branch point and, therefore, also a vertex. If there are identically two
contour segments, the difference in orientation at their ends is used as a measure of
curvature. If the curvature is greater than the necessary threshold, a vertex is extracted
and the calculated curvature value is used for the vertex size (Fig. 20). This approach
results in stable vertex angle values with respect to small changes in the location of the
vertex since absolute locations are not used to determine angles, only consistent
orientation values in the neighborhood of the vertex location are used.

This vertex extraction process will typically result in groups of vertex pixels clustered
together. For a stable vertex, the conditions that determine vertex existence must exist
over a small region so there will necessarily be multiple vertex pixels output from the
vertex extraction process. The raw vertex pixels (vertex locations) are processed so as to
replace localized groups of pixels with a single optimum vertex pixel. First, a size filter is
used that filters out all candidate vertex sites that are not part of a connected region of
neighbor vertex sites greater than a minimum size threshold. The resulting vertex sites are
dilated (thickened) so that close vertices are merged. The final processing stage collapses
vertex site regions down to a single vertex pixel by replacing the region with a single "best"
pixel based on curvature and gradient strength.

PREVIOUS RESULTS

Search Strategy Results

To test and evaluate our MBATR search strategy while de-emphasizing the role
played by feature extraction, we have used synthetic imagery and rudimentary feature
extraction techniques not appropriate for more complex imagery. We have generated
simple 2D and 3D models and implemented interactive tools for manipulating and
rendering images of the generated models.

One of the primary issues is ATR performance in the presence of clutter. To help
analyze clutter effects, we can interactively add synthetic views of different objects to an
image of an object we wish to recognize. To systematically obtain more analytic clutter
performance data, we randomly add clutter vertices to an image of a target to be
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Fig. 21) SIMPLE 3D TRUCK MODEL

recognized, in some cases with the target view unobstructed and clearly visible, in others,
we obscure much of the target view and create large breaks in the contour of the object.

As one example, we have used a simple, idealized truck for a 3D target (see Fig. 21).
We then generated a representative synthetic view of the truck, extracted the features,
obscured many of the extracted features and added random clutter vertices to the image
(see Fig. 22). Our ATR algorithm was used to correctly identify candidate matching
features (see Fig. 23). To further investigate performance in clutter, we systematically
added clutter features one at a time to a portion of a target signature, measured the

Fig. 22) SIMPLE 3D TRUCK MODEL MATCHING:
INPUT IMAGE WITH 394 CLUTTER VERTICES
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Fig. 23) SIMPLE 3D TRUCK MODEL MATCHING:
RESULTS and GROUND TRUTH
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recognition elapsed time and stored the result in a file so that we can quantitatively study
the relation between clutter and recognition time (see Fig. 24).

Stable Feature Extraction for Complex Targets

Using the implicit edge orientation approach optimized for sensitivity, described
above, we demonstrated preliminary feature extraction results with real FLIR imagery, as
presented in "Automated Missile Aim Point Selection Technology Final Report" for ONR
contract #N00014-92-C-0087. However, that work was considerably expanded in our
most recent program and the results are presented below.

Recognition of Complex Targets

We used a model of an M2 tank consisting of 1790 facets to evaluate treatment of
complex targets. Stable features were extracted from a typical synthetic target view and
successfully used to match corresponding features with the best view stored in the target
data base (see "Automated Missile Aim Point Selection Technology Final Report" for ONR
contract #N00014-92-C-0087). However, we used only synthetic imagery since, at that
time, we did not have target models consistent with our imagery. In our most recent
program, we have acquired consistent sets of target models and IR imagery and have
demonstrated feature matching with real targets and images, presented below.
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VERTEX SPACE INDEXING TIME vs. CLUTTER

Time
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Fig. 24) VERTEX INDEXING CLUTTER TESTS - results

Indexing time versus clutter is measured by systematicaly adding random vertices to
a degraded image of a target and recording the elapsed time for indexing. Note that
the measured data is in close agreement with that predicted by the complexity anal-
ysis, namely, complexity should be proportionate to the square of the number of clut-

ter (image) vertices.




RECENT PROGRESS

We acquired IR imagery databe{ses of targets of interest from Eglin Air Force Base
(TABILS), Night Vision Electro-Optical Lab (NVEOL Comanche data) and Wright
Patterson Air Force Base (WPAFB). We evaluated the preliminary feature extraction
techniques developed on earlier ONR programs, as described above. Our existing
curvature analysis techniques proved quite effective on the IR imagery data we used for
evaluation. However, we did make some minor refinements to optimize the calculated
curvature. It was then clear that target recognition accuracy performance, in general, and
vertex feature extraction, specifically, was limited by poor assignment of unique vertex
points to curvature regions. Our vertex extraction technique generates a single vertex
feature point for each region of high curvature, which is the process that required further
investigation.

The problem was particularly pronounced in middle to low resolution imagery of
complex targets, such as tanks, since many of the significant features are close enough
together that their associated curvature regions merge into extended amorphous blobs.
Our original assumption was that curvature regions would tend to be highly localized and
almost any point in the region would serve well as the unique vertex location. This
assumption applies to high resolution imagery, simple targets or low sensitivity feature
extraction. However, when the practical ATR problem and real battlefield conditions are
addressed, required performance can only be achieved by sensitive and stable feature
extraction of image features with minimal spatial extent. Since, as in most ATR systems,
the extracted features drive the higher level model to image matching processes, ATR
performance is completely dependent on successful feature extraction. Therefore,
optimum feature extraction is a goal that must be given highest priority

To extract optimal vertices from calculated curvature regions, many inter-related
problems had to be addressed. The raw curvature data is noisy, and small features close
together interact resulting in merged curvature regions. Further, the curvature regions are
often extended so finding a single vertex point to represent the region can be a problem.
And the feature attributes (such as vertex orientation and size) must not be overly
sensitive to the location of the vertex. To deal effectively with these problems, we
developed, implemented and demonstrated a curvature processing scheme (see Fig. 25).
We start by calculating the orientation field and resulting curvature (see Figs. 25a,b,c)
using the techniques described above.

As can be seen in Fig. 25c), many of the curvature regions are extended, making their
locations ambiguous, and, in many places, curvature regions from different target
structural features have merged together. To observe these effects in greater detail, see
Fig. 25d) which displays a blown up view of an interesting sub-region, the plate at the base
of an M60 tank gun barrel, of the image. Ideally, we would like to extract 4 vertices
associated with the corners of the target image component (points 1-4 in Fig. 25d) even
though they are only a few pixels apart. Clearly, highly sensitive and stable processing
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Fig. 25) CURVATURE PROCESSING:

T

Fig. 25a) Input Image:

Fig. 25b) Orientation Field:

Fig. 25¢) Raw Curvature:

and extraction techniques are required to achieve the necessary level of precision.

First, a non-linear filtering process is performed to reject isolated curvature pixels that
differ significantly from their neighbors. The nature of the curvature analysis process,
described above, is such that conditions for high curvature will exist over at least a small
region if a meaningful vertex is present. Therefore, isolated curvature points indicate noise
and are rejected (see Fig. 25f,g). After this filtering, the curvature regions associated with
the desired points V1 and V4 remain merged into one extended region. The goal is to split
this region into two, one each to be associated with each intended vertex, V1 and V4.

Standard gradient thresholding techniques applied directly to the curvature data are
not very effective since curvature strength does not typically vary reliably over different
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Fig. 25) CURVATURE PROCESSING (continued):
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Fig. 25e) Orientation Field
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parts of curvature regions. However, curvature orientation, properly defined, provides a
much better measure for discriminating between different curvature sub-regions.
Consistent with our notion of a vertex is a local vertex orientation that is a by-product of
our curvature analysis and describes the orientation of the line bisecting the vertex local
tangent. Curvature orientation is quite different for sub-region 1 than sub-region 4 (see
Fig. 25h). Changes in both curvature orientation and strength are quantified by calculating
a four dimensional gradient (Fig. 25i), which is then thresholded (Fig. 25j) and used to
successfully split extended curvature regions (Fig. 25k). To deal with the sparse nature of
the data, we have implemented a conditional kernel element gradient scheme. To avoid
skewing gradient calculations due to partial kernel support, we only include input from a
kernel element if it and its symmetric counterpart are both present in the curvature data.
It so, it is processed normally, otherwise, it and its counterpart are not processed and the
normalization factor is adjusted appropriately to account for the absence of the data pair.
This provides for accurate gradient calculations over incomplete kernel data support in
keeping with our goal of dealing effectively with limited data, as required for real battlefield
conditions.

The next curvature processing step is size filtering the surviving curvature regions. The
size filter metric is the number of connected pixels in each region. As mentioned above,
valid vertices should have strong curvature support over at least a small curvature region,
otherwise they are rejected (Fig. 25l). For the size filter we have chosen, the small
surviving curvature region for vertex 2 was just below the threshold (Fig. 25k) and was
consequently rejected. The reason can be seen by examining the orientation flow field
(Fig. 25e.). The orientation flow support for region 2 derives primarily from two flow
regions that are almost parallel (below and to the left of point 2) and separated by a small
break and could well be interpreted as two segments of the same extended image edge.
The extent of the horizontal flow field to the left of point 2 is very limited and results in a
correspondingly limited curvature region just below the threshold we are currently using.
(The effect of a small change on the size threshold can be seen below.)

The final curvature processing step assigns a vertex location to each surviving
curvature region. This is accomplished by finding the number of neighbor pixels, pixels in
the same region and within a given distance, at each pixel location, which provides a
measure of relative thickness (Fig. 25m), that conceptually indicates how deeply each
pixel is embedded in the region. The vertex location for each region is assigned to the
pixel with the highest thickness value which relates roughly to the centroid of each
curvature region.

Vertex parameters (size and orientation) are calculated using the orientation flow field
values at the vertex end locations, so vertex location only indirectly affects the value of
vertex parameters, providing improved stability over calculations using location directly.

The final extracted vertices are shown for the sub-image and the full image in Fig. 26.
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25) CURVATURE PROCESSING (continued):

Fig. 25h) Curvature (Vertex) Orientation  Fig. 25i) Curvature (Strength and
(sub-regions 1 and 4 have different orientations) Orientation) Gradient Magnitude

Fig. 25k) Curvature Region Split
(1 and 4 successfully split)

Fig. 251) Curvature Region Size Filtered Fig. 25m) Curvature Region Thickness
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Fig. 26) CURVATURE PROCESSING:
Extracted Vertex Features

3

Fig. 26c) Extracted Vertices - Sub-image
educed Size Filter Threshold

Fig.26d) Extracted Vertices - Fullimage Fig. 26e) Extracted Vertices - FullImage
Reduced Size Filter Threshold
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Fig. 27) FUNCTIONAL CURVATURE PROCESSING DESCRIPTION

Raw Curvature

(using orientation field analysis
as described in text)

| Fig. 251

Non-Linear Low Pass Filtering
removes isolated pixels

| Fig. 25¢g

Conditional Gradient
Processing of Curvature
Strength and Orientation

identifies boundaries for
region splitting

| Fig. 25i

Gradient Thresholding

splits curvature regions at
identified boundaries

| Fig. 25k

Region Size Filtering
rejects curvature regions
without adequate spatial support

Fig. 25l

Collapse Region to
Optimum Point

select pixel most deeply
embedded in region for
vertex location

v

Extracted Vertices (Fig. 26)

42 of 49



The current and somewhat lower size threshold resuits are shown. The curvature
processing scheme described here is presented graphically in Fig. 27.

Once the required curvature processing techniques had been developed,
implemented and demonstrated, and new models were acquired, new model databases
needed to be created using the new feature extraction process and new models.
However, our model manipulation and database creation software was written using the
Silicon Graphics Inc. (SGI) GL graphics library, which is being phased out in favor of a
new multi-platform standard, OpenGL. We chose to rewrite our graphics software, using
OpenGL, in part to maintain optimum support and, in parnt, to achieve multi-platform
porting capability. Our software can now run on SGl, Suns and even Pentium Unix (Linux)
platforms.

We integrated the new feature extraction and graphics software into our system and
began evaluation of indexing/matching capabilities using real IR imagery and the
appropriate target model. We have been using an M60 model and associated imagery.
The model was provided by KRC based on BRL-CAD data.

We have demonstrated the ability to effectively match model features with real IR
imagery (see Fig. 26). Although our resuits are recent and have not been fully evaluated,
it was soon evident that there are discrepancies between the provided model geometry
and the actual target geometry. Upon investigation, we were able to find at least three
different instances of the M60, the A1, A2, and A3, some of which have significantly
different features. We were not able to find out which versions we had for our imagery or
model. It was necessary to loosen some matching thresholds accordingly to
accommodate the differences. It is likely scale processing to reduce sensitivity to target
feature discrepancies will also be needed to make the most effective use of the existing
geometry models. These are areas that require further investigation.

43 of 49




Fig. 28) MATCHING REAL IR IMAGERY WITH M60 MODEL:

Fig. 28a) 60 Tank IR Image
original image

Fig. 28c) Best Matched Model View Fig. 28d) Best Matched Model View
extracted vertices

r@-'ikg.'28bk) M60 Tank IR Imagé
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PROGRAM SUMMARY

To date, we have developed pO\;verfuI ATR technology that effectively addresses the
critical issues driving the implementation and fielding of practical ATR systems. Inherent
in our ATR approach is a treatment of partially occluded, degraded target signatures,
clutter and sensitivity allowing for effective use of available information content to
distinguish similar targets. We achieve this capability through judicious choice of features
and feature attributes used to drive recognition, our local feature extraction techniques,
and our efficient search strategy that exploits invariant feature attributes using our Vertex
Space representation. ’

In earlier programs, sponsored by ONR and industry IR&D (Martin Marietta Labs and
Schiumberger), we developed and investigated the concept of Vertex Space, an invariant
representation which maps image features to a two parameter space with invariance to
many viewing geometry variations. Our high level search strategy exploiting Vertex
Space, was developed and its computational complexity was analyzed theoretically and
with automated clutter experiments. The strategy developed for indexing and feature
matching encodes model properties into a compact database by synthetically rendering
views of the target, extracting features and mapping the features to Vertex Space. The
Vertex Space representation for each view is stored in a hash table used for indexing by
an input image analyzed in a similar way.

Indexing (rapid preliminary recognition) results were demonstrated for simple and
complex real targets using target models and imagery available at that time. In addition,
techniques were developed, based on implicit contours derived from orientation
consistency, to extract stable features from real IR imagery for Vertex Space analysis
without the need for explicit edge or region extraction [Whi95].

In our most recent ONR program, we evaluated our system performance using

additional IR imagery data (from WPAFB, NVEOL and Eglin Air Force Base) and
geometry models consistent with the imagery and found that sensitivity to small scale
image details was limited by the nature of extracted curvature regions. Typically,
Increased sensitivity to accommodate low resolution imagery results in interpreting much
of the image clutter as valid features. Further, curvature regions associated with small
target features often interact, resulting in regions merging into amorphous blobs. Since
system performance is limited by the quality of extracted features, improved feature
extraction, specifically curvature region processing, was identified as a critical need.

We developed and implemented effective curvature processing techniques, including
non-linear filtering and region splitting based on curvature strength and feature
orientation, which greatly improved our system’s feature extraction performance. Our
system is now capable of reliably resolving densely packed, interacting, small scale
features. As a result, we were able to demonstrate feature matching between real IR




target imagery and the corresponding model, using only target geometry information. We
have not yet explicitly implemented synthetic IR signature generation, which should be
considered in further investigations. Our feature matching demonstration is recent and we
have not yet fully evaluated the results, but it is clear that there are some problems
resulting from discrepancies between the target model and imagery, apparently due to
variations of vehicles.

In the evolution of our ATR technology, the emphasis of our work has been on
development of our basic ATR technology, which can serve as the basis for a complete,
end-to-end ATR system. We began with the concept and development of a high-level
search strategy for model to image matching. We then developed the necessary
techniques for the extraction of stable and sensitive features that drive the matching
process. After initial evaluation, we improved the feature extraction process and
demonstrated performance consistent with a practical ATR system. The feature extraction
and matching processes were developed as separate modules that can run
independently or together. Taken together, they form the core of our ATR system.

Further Investigations

At the current stage of our ATR technology development, it is appropriate to re-
evaluate system performance to determine the impact of recent improvements. In
particular, special attention should be given to evaluating and refining the search process,
since recent progress has focused more on feature extraction. We are already aware of
some additional constraints that could be effectively incorporated into the indexing
software module.

It is also now appropriate to develop the additional modules required to realize a

complete end-to-end ATR system built upon the existing core modules, which would
facilitate evaluation. The additional modules required must perform the following
functions:

e determine viewing geometry from overconstrained sets of matched features
* project model features into the image using calculated geometry
« determine correspondence between projected model features and image features

* make the final recognition decision based on an appropriate set of threshold values

Once an end-to-end ATR system has been developed, it can be used to determine its
capabilities by performing the necessary evaluations, with an emphasis on the high level
matching and recognition processes, which, at that time, will be less developed and

46 of 49



mature than the feature extraction processes. An initial evaluation of the complete ATR
system would serve as the baseline for determination of impact resuiting from subsequent
improvements. :_ '

The initial evaluation would define the limits of the current treatment of IR
phenomenology which does not use explicit IR modeling, but only target model geometry.
As indicated by the evaluation results, current IR capabilities could be extended through
a treatment of scale processing in the visible domain. Scale processing techniques may
be effective in adapting visible target signatures to simulate IR sighatures and may also
contribute to general feature extraction stability and help to accommodate observed
discrepancies between model geometry and real targets.

More fundamental means of treating IR phenomenology could also be investigated,
including proprietary and commercially available synthetic IR modeling packages, such as
PRISM, TTIM and IRMA, and special data sets intended for use in building model
databases, such as those generated by the ARPPA UGV/RSTA project [Mun95] and
NVEOL.

Synthetic imagery generation provides a theoretical framework and a high level of
generality, but it may be difficult to achieve the necessary degree of signature fidelity. Real
IR imagery provides realism, but is limited in generality. The current imagery was acquired
using only the narrow range of conditions present at the acquisition time. It is also
restricted to only a few targets and 0 degree elevation (ground level) views. A study of the
different alternatives for treatment of IR phenomenology would be required to decide
whether to use a synthetic imagery or real imagery approach.

Promising techniques for the generation of synthetic IR signatures, have been
developed by Jonathan Mitchel who is currently at AbTech. As a graduate student at
University of Virginia, Dr. Michel worked with Prof. N. Nandhakumar developing
physically-based techniques for IR modeling and ATR [Mic94]. Their work advanced the
state of IR modeling to a level where it could provide descriptions of IR targets sufficient
for performing successful recognition, as evidenced by an Air Force program at AbTech
that demonstrated a working statistical ATR concept based on training using the synthetic
data provided by Dr. Mitchel’s system.

An alternative to model preparation with synthetic imagery is the use of special IR
image sets intended for modeling a given target. Andy Akerman and Ron Patton at
Nichols Research Corporation have successfully used some of this data (generated by
NVEOL and the ARPA RSTA/UGV program) to demonstrate impressive recognition
results in recent ARPA Image Understanding programs [Ake96]. They use critical point
features, very similar to our vertex features, for their hashing scheme and they have
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refined the raw data sets to optimize feature extraction for model preparation.
Other potential areas for further investigation include:

* Investigate extending the ATR technology developed in the base performance period
to the Synthetic Aperture Radar (SAR) domain.

» Develop techniques for treatment of articulated targets (such as tanks with moveable
turrets). A likely approach would be decomposition of articulated targets into
unarticulated components and consideration of constraints among the components.

* Use feature grouping based on perceptual significance to define reduced subsets of
image data to drastically reduce the amount of data needed to be analyzed at one
time, which would result in increased efficiency

* Implement adaptive model generation based on signature stability to improve both
efficiency and stability. More signatures would be used in viewing regions where the
signature changes rapidly and less where it is more stable so the modeling process
adapts to the local stability of the viewing geometry.

e Extending Vertex Space to accommodate complete contours (not just contour
segments in the vicinity of vertex features) may enhance both the high level
matching process as well as increasing the stability of extracted features.
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